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Abstract

In the case of ultra-short-pulsed laser heating, two effects become domineering. One is the non-Fourier effect in heat

conduction, and the other is the coupling effect between temperature and strain rate. In the present study, a generalized

solution for the coupled thermoelastic vibration of a microscale beam resonator induced by pulsed laser heating is

developed. The solution takes into account the above two effects. The combined finite sinusoidal Fourier and Laplace

transformation method is used to determine the lateral vibration of the beam. The effects of laser pulse energy absorption

depth and reference temperature have been studied.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Excitation of thermoelastic waves by a pulsed laser in solid is of great interest to many researchers due to
extensive application of pulsed laser technologies in material processing and non-destructive detecting and
characterization. When a solid is illuminated with a laser pulse, absorption of the laser pulse results in a
localized temperature increase, which in turn causes thermal expansion and generates a thermoelastic wave in
the solid [1,2].

The so-called ultra-short lasers are those with pulse duration ranging from nanoseconds to femtoseconds in
general [3,4]. In the case of ultra-short-pulsed laser heating, two effects become domineering. One is the non-
Fourier effect in heat conduction, which is a modification of the Fourier heat conduction theory. In most
engineering applications of conventional laser heating using a relatively low energy flux and long pulse
duration, the conduction heat transfer has been successfully modeled by the Fourier theory. Rapid
developments on laser techniques, such as the high-intensity and ultra-short duration laser beam, however,
have introduced situations where very large thermal gradients or an ultra-high heating speed may exist at the
boundaries. In such cases, as pointed out by many investigators, the classical Fourier model, which leads to an
infinite propagation speed of the thermal signal, is no longer valid [5–6]. The non-Fourier effect of heat
conduction takes into account the effect of mean free time (thermal relaxation time) in the energy carrier’s
collision process, which can eliminate this contradiction. The other is the coupling between temperature and
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strain rate, which causes transfer of mechanical energy associated with the stress wave to thermal energy of the
material. And this process is irreversible.

To-date, the classical Fourier heat conduction theory is widely employed, whereas, the non-Fourier
heat conduction theory is seldom used, for the study of microscale beams. At present, there are two
different theories of the generalized thermoelasticity: the first was developed by Lord and Shulman (L–S) [7],
and the second by Green and Lindsay (G–L) [8]. The former theory is based on the modified Fourier’s law
of heat conduction, and implements one relaxation time. Whereas, the latter theory was established by
modifying both the energy equation and the Duhamel–Meumann relation and implementing two relaxation
times.

The classical Fourier heat conduction equation is a parabolic equation, whereas, the non-Fourier heat
conduction equation is a hyperbolic equation, which is much more complicated to solve. By employing the
L–S model, Hany et al. [9] obtained the distributions of thermal stresses and temperature for a generalized
thermoelastic problem in which an infinite elastic space was subjected to the influence of a continuous line
source of heat. The solution of the problem was obtained by applying the Hankel and Laplace integral
transforms successively. Mohamed et al. [10] adopted the state space approach to solve one-dimensional
problems in generalized thermoelasticity using one relaxation time. The said technique was applied to a
thermal shock half-space problem and a layered medium problem. Tang [11] considered transient heat
conduction in a finite medium exposed to a pulsed surface heating using the generalized macroscopic
conduction model. The analytical solution was obtained using the Green’s function method and finite integral
transformation technique.

Micro- and nano-mechanical resonators have attracted considerable attention recently due to their
many important technological applications. Accurate analysis of various effects on the characteristics of
resonators, such as resonant frequencies and quality factors, is crucial for designing high-performance
components. Many authors have studied the vibration and heat transfer process of beams. Kidawa [12]
has studied the problem of transverse vibrations of a beam induced by a mobile heat source. The analytical
solution to the problem was obtained using the Green’s functions method. However, Kidawa did not
consider the thermoelastic coupling effect. Boley [13] analyzed the vibrations of a simply supported
rectangular beam subjected to a suddenly applied heat input distributed along its span. Manolis and Beskos
[14] examined the thermally induced vibration of structures consisting of beams, exposed to rapid surface
heating. They have also studied the effects of damping and axial loads on the structural response. Al-Huniti
et al. [15] investigated the thermally induced displacements and stresses of a rod using the Laplace
transformation technique.

The above-mentioned papers have hardly studied the vibration of microscale beam resonators induced by
ultra-short-pulsed laser by considering the thermoelastic coupling term. In the present study, a generalized
solution for the coupled thermoelastic vibration of a microscale beam resonator induced by pulsed laser
heating is developed. The finite sinusoidal Fourier transformation combined with Laplace transformation is
used to obtain the lateral vibration of the beam. Moreover, the effects of different laser pulse durations and
beam thicknesses are also studied.
2. Problem formulation

Since beams with rectangular cross-sections are easy to fabricate, such cross-sections are commonly adopted
in the design of MEMS resonators. Consider small flexural deflections of a thin elastic beam of length
L(0pxpL), width b(�b/2pypb/2) and thickness h(�h/2pzph/2), for which the x, y and z axes are defined
along the longitudinal, width and thickness directions of the beam, respectively. In equilibrium, the beam is
unstrained, unstressed, and at temperature T0 everywhere.

In the present study, the usual Euler–Bernoulli assumption [16] is adopted, i.e., any plane cross-section,
initially perpendicular to the axis of the beam, remains plane and perpendicular to the neutral surface during
bending. Thus, the displacements are given by

u ¼ �z
dw

dx
; v ¼ 0; wðx; y; z; tÞ ¼ wðx; tÞ. (1)
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The differential equation of thermally induced lateral vibration of the beam may be expressed in the form:

EI
q4w

qx4
þ rA

q2w
qt2
þ

q2MT

qx2
¼ 0, (2)

where EI, r, w, x, t and MT denote the bending rigidity, density, lateral beam deflection, distance along the
length of the beam, time and thermal moment, respectively; b ¼ Ea/(1/2v), in which a is the coefficient of
thermal expansion, E is Young’s modulus of the material of the beam, y ¼ T�T0 is the temperature increment
of the resonator, T(x,z,t) is the temperature distribution in the beam and T0 is the reference temperature:

MT ¼ bb
Z h=2

�h=2
yðx; z; tÞz dz: (3)

Assume that K ¼MT=bbh2
¼
R h=2
�h=2 yzdz=h2, thus, Eq. (2) can be expressed as

Eh2

12

q4w
qx4
þ r

q2w
qt2
þ bh

q2K
qx2
¼ 0. (4)

The initial temperature distribution in the beam is T(x,z,0) ¼ T0, i.e., y(x,z,0) ¼ 0. From t ¼ 0, the upper
surface (z ¼ h/2) of the beam is heated uniformly by a laser pulse with non-Gaussian form temporal profile, as
shown in Fig. 1, as follows:

IðtÞ ¼
I0t

t2p
exp �

t

tp

� �
, (5)

where tp is a characteristic time of the laser-pulse, I0 is the laser intensity which is defined as the total energy
carried by a laser pulse per unit cross-section of the laser beam.

In accordance with Ref. [11], the conduction heat transfer in the beam can be modeled as a one-dimensional
problem with an energy source Q(z,t) near the surface, i.e.,

Qðz; tÞ ¼
1� R

d
exp

z� h=2

d

� �
IðtÞ ¼

1� R

d
I0t

t2p
exp

z� h=2

d
�

t

tp

� �
, (6)

where d is the absorption depth of heating energy and R is the surface reflectivity.
The non-Fourier heat conduction equation involving the thermoelastic coupling term has the following form:

ky;ii þQðz; tÞ ¼ rcv

q y
qt
þ bT0

qui;i

qt
þ t0rcv

q2 y
qt2
þ t0bT0

q2ui;i

qt2
, (7)

where k, cv and t0 are the thermal conductivity, specific heat at constant volume and relaxation time, respectively.
Fig. 1. The temporal profiles of the heating laser with different pulse durations.
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Substituting Eqs. (1) and (6) into Eq. (7) yields,

k
q2 y
qx2
þ k

q2 y
qz2
þ

1� R

d
I0t

t2p
exp

z� h=2

d
�

t

tp

� �

¼ rcv
q y
qt
� T0bz

q3w

qx2@t
þ t0rcv

q2y
qt2
� t0T0bz

q4w

qx2qt2
. ð8Þ

There is no flow of heat across the upper and lower surfaces of the beam, i.e.,

q y
qz
¼ 0; z ¼ �h=2. (9)

Multiplying Eq. (8) by z/h2, and integrating it with respect to z from �h/2 to h/2, yields

k
q2K
qx2
þ k

Z h=2

�h=2

1

h2

q2y
qz2

zdz� rcv

qK

qt
þ T0b

h

12

q3w
qx2@t

� t0rcv

q2K
qt2

þ t0T0b
h

12

q4w
qx2qt2

þ
1� R

2

I0t

t2p

1

h2

ðhþ 2dÞ þ ðh� 2dÞeðh=dÞ

eðh=dÞ
exp �

t

tp

� �
¼ 0. ð10Þ

For a sufficiently thin beam, assuming that the temperature increment varies as sin(pz) along the thickness
direction, where p ¼ p/h, thus, we obtain

K ¼
1

h2

Z h=2

�h=2
yz dz ¼

1

h2p2
yjh=2
�h=2 � z

q y
qz
j
h=2
�h=2

� �
¼ �

1

p2

Z h=2

�h=2

1

h2

q2y
qz2

zdz. (11)

Substituting Eq. (11) into Eq. (10) yields,

k
q2K
qx2
� kp2K � rcv

qK

qt
þ

T0bh

12

q3w

qx2qt
� t0rcv

q2K
qt2
þ

t0T0bh

12

q4w
qx2qt2

þ
1� R

2

I0t

t2ph

ð1þ 2aÞ þ ð1� 2aÞeð1=aÞ

eð1=aÞ
exp �

t

tp

� �
¼ 0, ð12Þ

where a ¼ d/h.
The governing equations for the coupled thermoelastic problem are as follows:

Eh2

12

q4w

qx4
þ r

q2w
qt2
þ bh

q2K
qx2
¼ 0

k
q2K
qx2
� kp2K � rcv

qK

qt
þ

T0bh

12

q3w

qx2@t
� t0rcv

q2K
qt2
þ

t0T0bh

12

q4w
qx2qt2

þ
1� R

2

I0t

t2ph

ð1þ 2aÞ þ ð1� 2aÞeð1=aÞ

eð1=aÞ
exp �

t

tp

� �
¼ 0:

8>>>>>>>>><
>>>>>>>>>:

(13)
3. Analytical solutions

In this manuscript, a beam with both ends simply supported and isothermal is considered. Eqs. (13) are
solved using the combined finite sinusoidal Fourier and Laplace transformations (Refs. [17,18]). The
boundary conditions are as follows:

wjx¼0 ¼ wjx¼L ¼ 0,

q2w
qx2
jx¼0 ¼

q2w

qx2
jx¼L ¼ 0,

K jx¼0 ¼ Kx¼L ¼ 0. ð14Þ
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The initial conditions are:

wjt¼0 ¼ 0;
qw

qt
jt¼0 ¼ 0;

K jt¼0 ¼ 0;
qK

qt
jt¼0 ¼ 0:

(15)

A finite sinusoidal Fourier transformation can be employed to solve Eqs. (13) as follows:

wmðm; tÞ ¼
R L

0 wðx; tÞ sin
mpx

L

� �
dx;

Kmðm; tÞ ¼
R L

0 Kðx; tÞ sin
mpx

L

� �
dx:

8><
>: (16)

The inverse of the transformations are as follows:

wðx; tÞ ¼ 2
P1

m¼1;3;...
wmðm; tÞ sin

mpx

L

� �
;

Kðx; tÞ ¼ 2
P1

m¼1;3;...
Kmðm; tÞ sin

mpx

L

� �
:

8>>><
>>>:

(17)

Note that the boundary conditions for w and K are automatically satisfied.
By substituting Eqs. (16) into Eqs. (13), and implementing the initial conditions given by Eqs. (15), we

obtain:

r
q2 wm

qt2
þ

Eh2

12
r4wm � r2bhKm ¼ 0

kðr2 þ p2ÞKm þ rcv

qKm

qt
þ

T0bhr2

12

qwm

qt
þ t0rcv

q2Km

qt2

þ
t0T0bhr2

12

q2 wm

qt2
þ

1� R

r

ð1þ 2aÞ þ ð1� 2aÞ eð1=aÞ

eð1=aÞ

I0t

t2ph
e �t=tpð Þ ¼ 0;

8>>>>>>>><
>>>>>>>>:

(18)

wmjt¼0 ¼ 0,

qwm

qt
jt¼0 ¼ 0,

Kmjt¼0 ¼ 0

qKm

qt
jt¼0 ¼ 0, ð19Þ

where r ¼ mp/L, m ¼ 1,3,5,y.
Eqs. (18) can be simplified as follows:

q2 wm

qt2
þ A1wm � A2Km ¼ 0;

A3Km þ A4
qKm

qt
þ A5

qwm

qt
þ A6

q2Km

qt2
þ A7

q2wm

qt2
þ A8t e �t=tpð Þ ¼ 0:

8>>><
>>>:

(20)

The coefficients in Eq. (20) are given by

A1 ¼
Eh2r4

12r
; A2 ¼

r2bh

r
; A3 ¼ kðr2 þ p2Þ; A4 ¼ rcv; A5 ¼

T0bhr2

12
,

A6 ¼ t0rcv; A7 ¼
t0T0bhr2

12
; A8 ¼

1� R

r

I0

t2ph

ð1þ 2aÞ þ ð1� 2aÞeð1=aÞ

eð1=aÞ
. ð21Þ
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By applying Laplace transformation to Eqs. (20), we obtain

s2 ~wm þ A1 ~wm � A2
~Km ¼ 0;

A3
~Km þ A4s ~Km þ A5s ~wm þ A6s

2 ~Km þ A7s2 ~wm þ
A8

ðsþ 1=tpÞ
2
¼ 0:

8><
>: (22)

By solving Eqs. (22), we obtain

~wm ¼
b0

c0 þ c1sþ c2s2 þ c3s3 þ c4s4 þ c5s5 þ c6s6
, (23)

where

b0 ¼ �A2A8t2p,

c0 ¼ A1A3,

c1 ¼ 2A1A3tp þ A1A4 þ A2A5,

c2 ¼ A1A3t
2
p þ 2ðA1A4 þ A2A5Þtp þ A1A6 þ A2A7 þ A3,

c3 ¼ ðA1A4 þ A2A5Þt
2
p þ 2ðA3 þ A1A6 þ A2A7Þtp þ A4,

c4 ¼ ðA3 þ A1A6 þ A2A7Þt
2
p þ 2A4tp þ A6,

c5 ¼ A4t
2
p þ 2A6tp,

c6 ¼ A6t
2
p. ð24Þ

By inversing the Laplace transformation of Eq. (23), the deflection wm(m,t) is obtained as follows:

wmðm; tÞ ¼
X
a

b0e
at

c1 þ 2c2aþ 3c3a2 þ 4c4a3 þ 5c5a4 þ 6c6a5
, (25)

where a is the solutions of the following equation:

c0 þ c1aþ c2a2 þ c3a3 þ c4a4 þ c5a5 þ c6a6 ¼ 0. (26)

Substituting Eq. (25) into the first of Eqs. (17), the flexural deflection of the beam is obtained as follows:

wðx; tÞ ¼ 2
X1

m¼1;3;...

X
a

b0e
at

c1 þ 2c2aþ 3c3a2 þ 4c4a3 þ 5c5a4 þ 6c6a5
sin

mpx

L

� �
. (27)
4. Analysis of the calculation results

In the present work, the effect of reference temperature on the vibration characteristics is studied. Based on
Refs. [19–21], the material parameters of Si changes with temperature, as shown in Table 1. In the current
calculation, the size of the beam is kept unchanged, i.e., L/h ¼ 10, b/h ¼ 1/2, h ¼ 10 mm. The relaxation time is
t0 ¼ 10�12 s, and the energy intensity of the laser pulse is I0 ¼ 1000 J/m2. For different values of a, which is
related to the absorption depth, the beam absorbed different amount of energy and it vibrates in different
manners.
Table 1

Material parameters for different reference temperatures

E(GPa) r(kg/m3) K(W/(mK)) Cv(J/kgK) a(� 10�6K�1)

T0 ¼ 293K 165.9 2330 156 713 2.59

T0 ¼ 500K 163.3 2325 80 832 3.614
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Figs. 2 and 3 show the midspan deflection and temperature increment, respectively, for various values of
a ¼ d/h. The laser pulse duration and reference temperature are assumed to be tp ¼ t0 ¼ 10�12 s and room
temperature (i.e., T0 ¼ 293K), respectively. Since the vibration of beam varies with time, in order to capture
different vibration modes, the vibration curves are plotted for two time zones.

The non-Fourier effect can be clearly seen in Figs. 2 and 3, which show that in the beginning an abrupt
increase of the deflection and temperature of the microscale beam occur and subsequently they reduce to zero.
However, after a comparatively long lapse of time, they begin to vibrate periodically. Note that the sudden
jump of deflection is much smaller than the vibration amplitude. Moreover, it is obvious that the abrupt
increase of deflection decreases with increasing a, which is related to the energy absorption depth. This is
because an increase of a will decrease the energy concentration in the beam. In addition, the deeper the
absorption depth is, the more quickly the temperature distribution in the beam approaches uniformity. It is
important to note that by varying the value of a, the vibration amplitude of deflection and temperature vary,
Fig. 2. Midspan deflection of a microscale beam for different values of a ¼ d/h: (a) time range t ¼ 0–1� 10�11 s; (b) time range

t ¼ 0–1� 10�6 s.
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Fig. 3. Midspan temperature increment of a microscale beam for different values of a ¼ d/h: (a) time range t ¼ 0–1� 10�11 s; (b) time

range t ¼ 0–1� 10�6 s.
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while the vibration frequency remains the same. This means that the laser pulse does not change the intrinsic
frequency.

Figs. 4 and 5 show the plots of midspan deflection and temperature increment versus time, respectively,
for two different values of reference temperature T0. The laser pulse duration and energy absorption depth
are assumed such that tp ¼ t0 ¼ 10�12 s and a ¼ 1/10, respectively. It can be seen that a microscale beam
subjected to a higher reference temperature needs more time to reach the equilibrium state, i.e., the period is
longer and, thus, the frequency is smaller. However, the vibration frequency seldom changes when
the coupling effect between the strain rate and temperature field is ignored. This can be attributed to the
effect of thermoelastic coupling, which shows some damping characteristics. It can be seen from Table 1 that
the thermal parameters k, cv and a change significantly with time, which lead to the change of vibration
frequency.



ARTICLE IN PRESS

Fig. 4. Midspan deflection of a microscale beam for different reference temperatures T0: (a) time range t ¼ 0–1� 10�11 s; (b) time range

t ¼ 0–1� 10�6 s.
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5. Conclusion

The vibration of a simply supported Euler–Bernoulli beam induced by a non-Gaussian form laser pulse has
been studied. When a beam is heated by a laser pulse, the variation of temperature field and lateral vibration
occur due to the thermoelastic coupling effect. The analytical solution to this problem has been obtained using
the combined finite sinusoidal Fourier and Laplace transformation method.

In the present study, the non-Fourier effect of heat condution is accounted for and the thermal wave
model is adopted. The effects of laser pulse energy absorption depth and reference temperature have
been analyzed. It is important to note that after an abrupt increase of midspan deflection and temperature
in the beginning, the beam reaches a quasi-steady vibration quickly, which clearly shows the non-Fourier
effect.
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Fig. 5. Midspan temperature increment of a microscale beam for different reference temperatures T0: (a) time range t ¼ 0–1� 10�11 s;

(b) time range t ¼ 0–1� 10�6 s.
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